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P. O. !30X1663,KS B226
Los Alamos National Laboratory

Los A1oMo8, NM 87545

I. INTRODUCTI~

This paper examines ~he relationship between nodal methods and finite-

element ■ethods for solving the dleorete-ordinat~e form of the transport

equation in x-y geometry. Speoifloally, we wII1 examine tho relation of

three finite-element sohemas to the linear-linear’ (LL) ●nd linear-nodal” 1

(LN) nodal sche~es. The three finite-olemont sohemee ●re the linear-

oontinuoua-diamond-dlfferenoe’ (DD) sohem, tho linear-dlooontinuoueo-’ (LD)

ocheme, ●nd the quadratlo-diaoontinuous (QD) ●ohemo. A brief derlvatlan of

the (LL) •~ld (LN) nodal echemeo la glvon in the third eeotion of this paper.

The approximatlona that cause the LL sohomo tu reduoe to the DD, LD, and QD

schemes ●re then indloated. An extromaly S19P1O ●ethod of deriving the

flnlte-element sohemes 1s then lntroduood.

R@oently, two papers have boon publishad thnt lnd!.oat., in mm. detail,

●n intnreatlng fol’m into whloh the LN ●quationa oan tM east.s’” It will be

shown that the finit.-aloment sahemoa being oonsidarcd oan be oaot into this

~ame ‘auwnted-voightod-diamond” form, ●nd tho •am~ ●lgorlttm ‘chat haa been

used to solve the LN equatlone oan b. uaod to 00IvQ tho flnlto-olomont

equationn. For ●oro information on the nodal method in truncport theory, an

exoellent review paper on tho &uBjoct that 10 bolng published should b.

oonaulted. *’ In the last sootlon of tho papw, a well-logglng problom la

●n&lyzed ualng ●ll of tho 8ohomoe under dlaoumaion in thla paper. The

aoouraoy of the roaults ●u in ●groomont with tho nbmorvatlonm mad. in tho

~per.
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The disorote-ordinatss fora of the transport equation for direotion m

and energy group s is

il)

Here f(x,y,u,n) is the neutronangularflux. a is the neutrontotalcross

section. S is the drivingsoume for the transportequationand can con~ist

of in-aoatter,out-aaatter, self-aoatter, and fiaaion. P and IIand the x-

and y-direction ~oainea. Hereafter, the subscripts m and g will be

suppressed,

The solutionto thisform of the transportequation will be obtained

for all the numerioalsohemeswithinthe rectangularnodeor cell bour,ciedby

AxmxR-xL ,

AY=YT-Y~ 8

‘L + ‘R
~“’- ,and

Throughout thiepaper,L, R, B, T, and L ●re euboariptn nuoh thatL = left,

R - riaht,B - bottom,T M top, ●nd A = ●verage. For simplicityin develop-

ing the ●qUation# for tho ●ohenes underconsideration,it will be aosumed,

in ●ll OaseB, that v,n > 0, That 1s, the neutronflow is fmn left to right

snd bottom to top.
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The oell-based Legendre polynaiala used by other inve8’Gigatorel*are

now introduced

Po(u) - 1 , (2a)

2(U
-2

P,(u) -
- u)

Au “

F’2(U) -
6(u ‘2 1- u) --

(hu)2 2 ‘

(2tl)

(2C)

where u - x or y. These polynomials exhibit the usual orthogonalproperties

(3)

If the neutron angular flux within the node is givmn by T(x,Y), then

*A -

$x “

●nd

Y~

H dy
‘R

dxPO(x)P,(y)T(x,y)
Y~ ‘L

AXAY B (4a)

Y~

I
‘R

3 \yB ‘y XL dxP1(x)PO(y)Wx,y)

AXAY f (4b)

(YT ‘R13 IYB ‘y XL
dxPO(x)P1(y)Wx,y’

‘Y “ AXAY # (40)

whore $A 10 tho ●vorago flux in tha nod., Vx la tk ~vorago x-momont o? tho

fA,J~ in tha node, ●nd q 1s tho ●vornRo y-momont of the flux 1P, tho nod..
Y

In a almilsv manner, ~f the oourae within the nod. ‘,s #lven by S(x,y), then

9A oan be dofinod ●s the ●vcrago mouroo in tho nodo, 9X the ●vera~a x-mcmnt

of tho ●ouroe in the node, ●nd S,, the ●voraco y-mr~ent of the souroe in the
J

mdo.
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S? T(x, yT) 1s t~ angularflux on the top edge or faoe of the node,

ttnn

$T-

‘T “

I%PO(X)?(X,YT)
‘L

Ax #

3
1
‘R P1(X)T(X,YT)
‘L

Ax #

(5a)

(5b)

whore ~ is the average angular flux on the top edge of the node, and OT 1s

the average x-mcment on the top edge of the node. Similar expressions hold

for the mcmnta on the oth~.’ edges.

At thie point, three moment equations of the transport equation are

introduood using the quantities defined earlier in this section. If the

transport equation is ❑ultiplied by PO(X) ● PO(Y)/AXAY ●nd lntegrat.ed over

the node, the balanoe equation for the averageflux $A 1s obtained

If the transport equation is multiplied by 3 ● PI(x) u PO(Y)/AXAY and in-

tegrated ovor the node, the balanoo equation for the ●verago x-moment of

flux Vx 1s obtalnod

~*R+~L-2vA)+(eT-eB)+vm+,
(7)

x ‘Y
x

If tho transport ●quation 18 multlpllod by 3 ● PO(X) ● P1[y)/AkAy and ln-

togratod ovor the nod-, the balance ●quation for t3e ●verage y-moment of the

flux *Y is obtained

(OR - OL) 3(*B + Vm - 2VA)
+ .

+$ .3 .
CX

CY
Yo

(8)

Hero, Cx = IYAx/p ●nd c
Y

= oAy/rI.
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These moment equationswill M ueed to simplify tome ●ppearin~ifithe

derivationof the nodalequaticmein the next seotion. The dlaoontinuoue-

finite-elenentequatione will be deriveddlreotlyfom theeemment equa-

tionsin thu fourthsectionof th18 paper.

111. ~DAL SCKM’tS

The aquatione for the LL nodal soheme ●ra derived baaed on linear

expansions for the source within the node S(x,y),●nd fluxe8on the edges

auohas ?(x,YT). T?me are

S(x,y)- sAPo(x)Po(y) + SXP1(X)?O(Y)+ SYPO(X)P,(Y)

and

T(X,YT) - *TPO(X)+ P1(x)eT .

t (9a)

(9b)

If the transport equation lG multiplied OY ?O(X)/AX and ● transverse

Integration is oarriod out over x, the resulting one-dimensional ●qwt:on in

y oa~ be solved for the anknovn anaular

*T - *B exP(-Cy ) + pO(cy)[SAAy,’n +

rlUX ~ ●long the t~p edge

c (*L - VR)

Cx 1

c (9L - OR)
+ [2P1(CY)- Po(cy)l[syAy/ll + —1 *

Cx

(10)

Notioe that s lIn@nr transverse leakage ●nd 8ource are indioated in this

cxprenaion.

If tho trsnoport ●quation la ■ultiplied by 3 * P1!x)/Ax, and ● trans-

verse integration io oarried out over x, the resulting one-dimenolonal

●quation in y oan be solved for the unknownx-momentof the ●ngular flux OT

aloac the top ●dae
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(2*A- *R - *L)

c- 1
s

+ C2P1(CY)- Po(cy)l[ c I*
x

(11)

By oarrylngout the transverseinte~mtionover the y variable,siml;ar

equationsfor the unknowns~ and OR can be derived. Here

(1 -c)PO(G)= -co 9 (12a)

and

[1 - PO(C)]
PI(C) -

c
● (12b)

Thesefour equations,alongwith the three momentequationsfor yj, $X, and

$Y, Oons:itutethe LL nodalsoheme.

Beforereducingthe LL equationa to the LN equations, It should be

noted that the terms in equations for VT and eT that appear due to the

oonstantexpansiontermsoan be rewrittenusingthe $A balanceequation. In

a ,Sirnilarma~iner,the terms tn the equations for VT and t3Tthntappeardue

to the linearexpansiontermsoan be r~writtonusing the Vy balanoe equa-

tion. The rbwrittenequationaare

*T “ *B exp(-cyl+ Po(cy)x [cy*A+ *T “ *B] + [2P1(CY)- P (c )]Oy
(13a)

●nd
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OT = OB exp(-cy) + PO(CY) x [cy*X + (QT - OB)I

+ [2P1(CY) - Poky)l (Isb)

x [3(?) x (2$ - en - Q] ●

x Y

The LN equations !we obtainedby assumingthe diamondrelationin only the

last term in the equationfor OT. That is,

(~R + OL)

WY-2” (14)

A similarassumption4s made fur $x in the OR equation. The LN equationa

are much simpler than the LL equationsdue to uncouplingof the equations

thatresultsfrom thisdiamondapproximationIn the O equations. Note that

thla 18 equivalent to dropping all terms In the 0 equationathatappear

becauseof lineartermsin expansions. The LN equationfor OT can be solved

for $x to obtain

(15)

A similar expression 1s obtainedfor $Y from the 6R equation. W the limit

of small Ay, this relation for Vx beoomesthe diamondrelation

(16)

and in the limit of largeAy, it beoomeathe step relationthat agrees with

the resultin the linear-dieoontinuous(LD)method

(17)

In Ref. 9, these LN equations were further rocluoedto an fiaugmented-

weighted-diamond=form. The ●xpreesion~for $A ar. of the followinuform;
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(18a)

(18b)

The uonstantsappearingin theserelationsdependonly on M, n, Ax, tiy,and

00 Ualng these expressions in the 9A balanceequation,*A can be deter-

mined,and all outflowquantitiesoan be obtainedby simpleextrapolations.

The computerprogramWing the LN schemeis programmedusingthis technique

to solvethe LN equationa.

IV. FINITE EL~ENT SCH~ES

It IS a stmple❑atter Se generate the diamond-differencerelations from

the nodal equation(Isa). First,the Pade’ (1,1)expansionIs used fop the

exponenteverywhereit appearsin thisequation. That 18

exp(-c) =
2-C
~“

Notethat Po(c)and P,(c)becomein thisapproximation

Po(d “+ ,

and

ao that

2 c P,(c)- Po(c)- 0 s

(19)

(20a)

(20b)

Ths ●quationfor ~ beoomeo
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(21)

Thisrelationreducesto

which Is the usual

continuous finite

s (22)

diamond-differen~erelation associated with a linear’-

elementin x-y rectangulargaometry. Thisrelationalong

with the baJ.anteequation,Eq. (6)0constitutesthe DD soheme.

The use of the Pade~ (1,1) approximationin the LL equationsremoves

the influenceof the linearmomentsof the flux an~,the sourcein the deter-

mination of the node average flux and the node edge fluxes. It shouldbe

clearthatthe DD ac!hemeis leasaccuratethan all the higher

when linear m~mentsof the fluxand sourceare imoortantand

(1,1)approximationis a poorapproximationto the exponent.

order schemes

when the Pade’

Both of these

conditions can occur wh$m the optiaal t’nioknessof the node (cx or Cy)

becomeslarge. Noticethat the Pade’ (l.l)approximationto the exponentis

negativefor c > 0.

The linear-discontinuous(LD) equations can be obtained from the LL

equations (13a)and (13b)withthe followingassumptions.First?the Pade’

(1,2)approximationis used for the exponuts appearingin Eq. (13a)for *T.

This approximationis

6-2c
exp(-c)- z“6 + 4C +C

(23)

Next i? assumedthat the unknownnode-edgelinear-fluxmomentaare equalto

the node-averagelinearfluxmoments. That is

(24a)

and

OR-ql
Y“

{24b)
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Theseapproximations,alongwith the threebalanceequations(6), (7),

(8) fOr” *A, $x, and *Y, and the approximate equationsfor ~ and $R

constitutethe LD equations. Noticethatthe Pade’ !1,2) approximationto

the expouent1s negativefor c > 3.

The aehemereferredto as the quadratic-discontinuous(QD) scheme is

identical to the LD scheme except for the Pade’ approximation used in

Eq. (13a). The QD smhemeis obtainedby assumingthe Pade*(2,3)approxima-

tion for the exponentin Eq. (Isa). Thisapproximationis givenby

60-
exp(-c)- —

24c + 3C2

60+36e+9c*+e3 “
(25)

It 1s fmportant to note that this Pade’ approximationto the exponentis

alwayspositivefor any positivereal value of e. In the next section of

t 1s paper, che discontinuous-finite-elementschemesw~ll be derivedin a

more straightforwardmanner using polynomial expansions and the balacce

equations.

V. DERIVATIONOF DISCONTINUOUSFINITEELEMENTSCHEMES

First,the equationsof the LD schemewill be deriveddirectlyfromthe

balanoeequations,Eqs. 6-8. The LD approximation assumes a linear expan-

sion for the flux Y(X,Y)withinthe node

Y(x,y)~ *APO(X)PO(Y)+ $x’P1(x)Po(y)+ $Y’O(X)P1(Y) ●

Reaall that, in dinaontinuouamethods, the flow is discontinuous

inflowedges,but oo.ltitwous at the outflowedges. This impliesthat

(26)

on the

OR m *Y , (27a)

and

*y’’*T- *A ●

(27b)
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for OR h aubstltutedinto the balance equation for *Y,

Now, substitute the expression (27b)intoEq. (28)to obtain

(28)

(29)

Rearranging this equaticn yields the ‘augmented-weighted-diamond”form

associated with the LD approximation

$~ =

fy =

(2- fy)$A- (1 - “.Y)VB++ . [eL+~] .
x

c (1 ‘+ Q

3CX + Cy(l + Cx) “

(30)

(y)

A similar expreaaion can be obtained for the x coordinate carryin8out

similaroperationson the $x equation,Eq. (7). These expressions, along

with the balan~e equation of $A, oonetitutethe equationsof uhe linear-

discontinuous(LD)scheme.

Tho quadratic dlsoontinuoue appr~xiinatlonmakes the assumptionof a

quadratia expahsion withinthe node

Y(X,Y)- l#APo(x)Po(Y)+ VXP1(X)PO(Y)+ 41YPO(X)P1(Y)

(32)

+ qlxxP2(x)Po(y)+ *YYPO(X)P2(Y) ●

Here Vuu 1s the seoondmomentof the flux withinthe oell with u = K or y.

In this approximation,the ●ssumptionof ● linearsouroeuithinthe Ilodeand

a Ainew fluxon the edgesof the node are ret~ined. With these Assump-

tions,Lhe seaondmomentbalanueequationa●re
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From the quadratictluxexpanaion
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(33a)

Substituting this relation for $Y and solving Eq. (33b)for $Yy yields

5($T + Wb ‘“ 2UJA)

*YY “ —’-TCY + 10) “

(33b)

(34)

(35)

SubstitutingMls expressionfor Wyy into Eq. (34)for qy,

5($T - VB) + c (*T- VA)
*Y - (36)+ 10)

.
(‘Y

Notioe that for c large, this is the same as the LD relationin Eq. (27b)

for *Y. Sincethe flux on the edgeof the node is linear, Eq. (27a) still

applie8. Substituting from Eq. (36) into Eq. (28), the quadratic-

discontinuoua ‘augmented-weighted-diam~nd”form is obtained, which is

identical to that of the Ll?soheme,Eq. (30). The only differenceis that

the fy are now dGflnedas

(lo+ c)~c “(l+CX)

fy - 15 + Ey)cy(l + Q + 3CX(10+ ~ ) ‘ (37)
Y

A similar expression oan be obtained for the x coordinate oarrying out

similar operations on the Wx equation, Eq. (7). Theseexpressionsalong

with the balanoeequationfor VA constitutethe oquation8of th~ quadratio-

dlsoontlnuesQD soheme.
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In thissection,the ‘augmented-weighted-diamondwform of the LD and QD

schemes has bee~lderived simply by using the balanceewatims~ and the

polynomial expansion associated with each scheme. In general, it is

@xpected that the positivity should be in the ordarDD~ LD~ and QD~ from

most positiveto least positive. This is based on the posltivlty of’the

Padef approximation used in each scheme.

VI. DXSCIMSXONAND RESULTS

‘Jheresults of an analysis of a two-dimensional. well-logging problem

investigated in Refs.9 and 13 are shown in Figs.1 and 2. The LL solution,

whiuh is the most aoourate solutionat everynode refinement)ia Shown in

both figures. The data for both figures is shown in Table 1. The

absorptionrate plotted1s that determinedin the deteoto~of a well-logging

tool● The minimum halueGf the mean-freepath in this problem 18 0.67 om.

A node size of 8 om 1s then roughly 12 meen-f~ee paths. In Fig. 1, it

shouldnot be surprising,then,thatthe DD solutionis so ill behaved for

this node size. There are so many r?ggativeflux fixupsthatthe result is

almostmeaningless.At a node size of 2 om or 3 mean-freePaths) both the

LL and LN solutions are well within one peroent of the referenoe

extrapolatedvaluefor detectorabsorptionrate. Clearly, both LL and LN

solutions are far more aoouratethan the DD solutionsfor reasonablysized

nodes.

The LD and QD resultsare plottedalongwith the LL resultsin Fig. 2.

Surprisingly,the LD resultsare slightlymere aoouratethan the QD results

for all but the smallest node size. Thla inaoouraayin the QD rebulta18

probablyoausedby the negleotof the moss term in the qu~drattcexpanslan

Eq. (32). If the aross termhad beenretained,the system of equationsfor

$At $Tt and $IRwould havebeen fullyooupledwith all of the unknowns ap-

pearingin eaoh of the threeequations. In this ease, the expressionfor fy

wouldhavobeen extremelyoomplin~ted.Neitherof the discontinuoussohemes

is as aoourateas the two nodalsehemeo. The advantage of the disoontlnuoue

sohemes1s that they aan be appliedto geometriesotherthan x-y rectangular

geometry where it is diffioult,if not impossible,to use the nodaltrans-

portmethod.
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In Ref. 12, It was foundthat in one-dimensionalproblemswith a linear

uouruerepresentation,the analyticcharacteristicmethodyieldedaccuracies

of O(AX”), while the linear-discontinuousmethodgaveO(AX’)0 Thisresult

was the motivationfor examining the QD scheme described in this paper.

Since the quadratic-discontinuousschemegeneratesthe more accuratePade’

(2,3)approximationto the exponent,it was hoped that a two-dimensional

soheme would be obtained which was equivalentin acouracyto the LL nodal

scheme. In futurework, the full quadraticexpansionwill be examined.

In the presento~ding,the weightsa in Eqs. (18a,b)and fy in Eqs. 31

and 37 wererecomputedfor each phase-spacepoint in the inner-most looFJ.

If theseweightsare preacmputedand stcred,then eachof theseschemeswill

execbteat approximatelythe same speed. Recall that the linear methods

must compute additionalmoments. The storagerequiredfor one energygroup

1s the sizeof the coarsemesh timesthe numberof discretedirectionsin a

quadrant(twodimensions).
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TABLE 1

Absorption Rate in

Absorption

U. F. Walters

Doteotor

Raten~aeu

x 105

Method LN DD DD LD QD

Node Size
(em.)

8.o 9.86o5 10.475 14.987 11,772 12.112

4.0 9.7785 9.89515 8,4679 10,116 10.246

2.0 9,6874 9.7009 9.3142 9.7468 9.7537

1.0 9.\5429 9.6440 9.5413 9.6579 9.6519

● 50 9.6087

.25 9.6257
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